FindMPI¶
Find a Message Passing Interface (MPI) implementation
The Message Passing Interface (MPI) is a library used to write high-performance distributed-memory parallel applications, and is typically deployed on a cluster. MPI is a standard interface (defined by the MPI forum) for which many implementations are available. All of them have somewhat different include paths, libraries to link against, etc., and this module tries to smooth out those differences.
Variables¶
This module will set the following variables per language in your project, where <lang> is one of C, CXX, or Fortran:
MPI_<lang>_FOUND TRUE if FindMPI found MPI flags for <lang>
MPI_<lang>_COMPILER MPI Compiler wrapper for <lang>
MPI_<lang>_COMPILE_FLAGS Compilation flags for MPI programs
MPI_<lang>_INCLUDE_PATH Include path(s) for MPI header
MPI_<lang>_LINK_FLAGS Linking flags for MPI programs
MPI_<lang>_LIBRARIES All libraries to link MPI programs against
Additionally, FindMPI sets the following variables for running MPI programs from the command line:
MPIEXEC Executable for running MPI programs
MPIEXEC_NUMPROC_FLAG Flag to pass to MPIEXEC before giving
it the number of processors to run on
MPIEXEC_PREFLAGS Flags to pass to MPIEXEC directly
before the executable to run.
MPIEXEC_POSTFLAGS Flags to pass to MPIEXEC after other flags
Usage¶
To use this module, simply call FindMPI from a CMakeLists.txt file, or
run find_package(MPI)
, then run CMake. If you are happy with the
auto-detected configuration for your language, then you’re done. If
not, you have two options:
1. Set MPI_<lang>_COMPILER to the MPI wrapper (mpicc, etc.) of your
choice and reconfigure. FindMPI will attempt to determine all the
necessary variables using THAT compiler's compile and link flags.
2. If this fails, or if your MPI implementation does not come with
a compiler wrapper, then set both MPI_<lang>_LIBRARIES and
MPI_<lang>_INCLUDE_PATH. You may also set any other variables
listed above, but these two are required. This will circumvent
autodetection entirely.
When configuration is successful, MPI_<lang>_COMPILER
will be set to
the compiler wrapper for <lang>, if it was found. MPI_<lang>_FOUND
and other variables above will be set if any MPI implementation was
found for <lang>, regardless of whether a compiler was found.
When using MPIEXEC
to execute MPI applications, you should typically
use all of the MPIEXEC
flags as follows:
${MPIEXEC} ${MPIEXEC_NUMPROC_FLAG} PROCS
${MPIEXEC_PREFLAGS} EXECUTABLE ${MPIEXEC_POSTFLAGS} ARGS
where PROCS
is the number of processors on which to execute the
program, EXECUTABLE
is the MPI program, and ARGS
are the arguments to
pass to the MPI program.
Backward Compatibility¶
For backward compatibility with older versions of FindMPI, these variables are set, but deprecated:
MPI_FOUND MPI_COMPILER MPI_LIBRARY
MPI_COMPILE_FLAGS MPI_INCLUDE_PATH MPI_EXTRA_LIBRARY
MPI_LINK_FLAGS MPI_LIBRARIES
In new projects, please use the MPI_<lang>_XXX
equivalents.