CMakePackageConfigHelpers

Helpers functions for creating config files that can be included by other projects to find and use a package.

Adds the configure_package_config_file() and write_basic_package_version_file() commands.

Generating a Package Configuration File

configure_package_config_file

Create a config file for a project:

configure_package_config_file(<input> <output>
  INSTALL_DESTINATION <path>
  [PATH_VARS <var1> <var2> ... <varN>]
  [NO_SET_AND_CHECK_MACRO]
  [NO_CHECK_REQUIRED_COMPONENTS_MACRO]
  [INSTALL_PREFIX <path>]
  )

configure_package_config_file() should be used instead of the plain configure_file() command when creating the <PackageName>Config.cmake or <PackageName>-config.cmake file for installing a project or library. It helps making the resulting package relocatable by avoiding hardcoded paths in the installed Config.cmake file.

In a FooConfig.cmake file there may be code like this to make the install destinations know to the using project:

set(FOO_INCLUDE_DIR   "@CMAKE_INSTALL_FULL_INCLUDEDIR@" )
set(FOO_DATA_DIR   "@CMAKE_INSTALL_PREFIX@/@RELATIVE_DATA_INSTALL_DIR@" )
set(FOO_ICONS_DIR   "@CMAKE_INSTALL_PREFIX@/share/icons" )
#...logic to determine installedPrefix from the own location...
set(FOO_CONFIG_DIR  "${installedPrefix}/@CONFIG_INSTALL_DIR@" )

All 4 options shown above are not sufficient, since the first 3 hardcode the absolute directory locations, and the 4th case works only if the logic to determine the installedPrefix is correct, and if CONFIG_INSTALL_DIR contains a relative path, which in general cannot be guaranteed. This has the effect that the resulting FooConfig.cmake file would work poorly under Windows and OSX, where users are used to choose the install location of a binary package at install time, independent from how CMAKE_INSTALL_PREFIX was set at build/cmake time.

Using configure_package_config_file helps. If used correctly, it makes the resulting FooConfig.cmake file relocatable. Usage:

  1. write a FooConfig.cmake.in file as you are used to

  2. insert a line containing only the string @PACKAGE_INIT@

  3. instead of set(FOO_DIR "@SOME_INSTALL_DIR@"), use set(FOO_DIR "@PACKAGE_SOME_INSTALL_DIR@") (this must be after the @PACKAGE_INIT@ line)

  4. instead of using the normal configure_file(), use configure_package_config_file()

The <input> and <output> arguments are the input and output file, the same way as in configure_file().

The <path> given to INSTALL_DESTINATION must be the destination where the FooConfig.cmake file will be installed to. This path can either be absolute, or relative to the INSTALL_PREFIX path.

The variables <var1> to <varN> given as PATH_VARS are the variables which contain install destinations. For each of them the macro will create a helper variable PACKAGE_<var...>. These helper variables must be used in the FooConfig.cmake.in file for setting the installed location. They are calculated by configure_package_config_file so that they are always relative to the installed location of the package. This works both for relative and also for absolute locations. For absolute locations it works only if the absolute location is a subdirectory of INSTALL_PREFIX.

New in version 3.1: If the INSTALL_PREFIX argument is passed, this is used as base path to calculate all the relative paths. The <path> argument must be an absolute path. If this argument is not passed, the CMAKE_INSTALL_PREFIX variable will be used instead. The default value is good when generating a FooConfig.cmake file to use your package from the install tree. When generating a FooConfig.cmake file to use your package from the build tree this option should be used.

By default configure_package_config_file also generates two helper macros, set_and_check() and check_required_components() into the FooConfig.cmake file.

set_and_check() should be used instead of the normal set() command for setting directories and file locations. Additionally to setting the variable it also checks that the referenced file or directory actually exists and fails with a FATAL_ERROR otherwise. This makes sure that the created FooConfig.cmake file does not contain wrong references. When using the NO_SET_AND_CHECK_MACRO, this macro is not generated into the FooConfig.cmake file.

check_required_components(<PackageName>) should be called at the end of the FooConfig.cmake file. This macro checks whether all requested, non-optional components have been found, and if this is not the case, sets the Foo_FOUND variable to FALSE, so that the package is considered to be not found. It does that by testing the Foo_<Component>_FOUND variables for all requested required components. This macro should be called even if the package doesn't provide any components to make sure users are not specifying components erroneously. When using the NO_CHECK_REQUIRED_COMPONENTS_MACRO option, this macro is not generated into the FooConfig.cmake file.

For an example see below the documentation for write_basic_package_version_file().

Generating a Package Version File

write_basic_package_version_file

Create a version file for a project:

write_basic_package_version_file(<filename>
  [VERSION <major.minor.patch>]
  COMPATIBILITY <AnyNewerVersion|SameMajorVersion|SameMinorVersion|ExactVersion>
  [ARCH_INDEPENDENT] )

Writes a file for use as <PackageName>ConfigVersion.cmake file to <filename>. See the documentation of find_package() for details on this.

<filename> is the output filename, it should be in the build tree. <major.minor.patch> is the version number of the project to be installed.

If no VERSION is given, the PROJECT_VERSION variable is used. If this hasn't been set, it errors out.

The COMPATIBILITY mode AnyNewerVersion means that the installed package version will be considered compatible if it is newer or exactly the same as the requested version. This mode should be used for packages which are fully backward compatible, also across major versions. If SameMajorVersion is used instead, then the behavior differs from AnyNewerVersion in that the major version number must be the same as requested, e.g. version 2.0 will not be considered compatible if 1.0 is requested. This mode should be used for packages which guarantee backward compatibility within the same major version. If SameMinorVersion is used, the behavior is the same as SameMajorVersion, but both major and minor version must be the same as requested, e.g version 0.2 will not be compatible if 0.1 is requested. If ExactVersion is used, then the package is only considered compatible if the requested version matches exactly its own version number (not considering the tweak version). For example, version 1.2.3 of a package is only considered compatible to requested version 1.2.3. This mode is for packages without compatibility guarantees. If your project has more elaborated version matching rules, you will need to write your own custom ConfigVersion.cmake file instead of using this macro.

New in version 3.11: The SameMinorVersion compatibility mode.

New in version 3.14: If ARCH_INDEPENDENT is given, the installed package version will be considered compatible even if it was built for a different architecture than the requested architecture. Otherwise, an architecture check will be performed, and the package will be considered compatible only if the architecture matches exactly. For example, if the package is built for a 32-bit architecture, the package is only considered compatible if it is used on a 32-bit architecture, unless ARCH_INDEPENDENT is given, in which case the package is considered compatible on any architecture.

Note

ARCH_INDEPENDENT is intended for header-only libraries or similar packages with no binaries.

New in version 3.19: The version file generated by AnyNewerVersion, SameMajorVersion and SameMinorVersion arguments of COMPATIBILITY handle the version range if any is specified (see find_package() command for the details). ExactVersion mode is incompatible with version ranges and will display an author warning if one is specified.

Internally, this macro executes configure_file() to create the resulting version file. Depending on the COMPATIBILITY, the corresponding BasicConfigVersion-<COMPATIBILITY>.cmake.in file is used. Please note that these files are internal to CMake and you should not call configure_file() on them yourself, but they can be used as starting point to create more sophisticted custom ConfigVersion.cmake files.

Example Generating Package Files

Example using both configure_package_config_file() and write_basic_package_version_file():

CMakeLists.txt:

include(GNUInstallDirs)
set(INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR}/Foo
    CACHE PATH "Location of header files" )
set(SYSCONFIG_INSTALL_DIR ${CMAKE_INSTALL_SYSCONFDIR}/foo
    CACHE PATH "Location of configuration files" )
#...
include(CMakePackageConfigHelpers)
configure_package_config_file(FooConfig.cmake.in
  ${CMAKE_CURRENT_BINARY_DIR}/FooConfig.cmake
  INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Foo
  PATH_VARS INCLUDE_INSTALL_DIR SYSCONFIG_INSTALL_DIR)
write_basic_package_version_file(
  ${CMAKE_CURRENT_BINARY_DIR}/FooConfigVersion.cmake
  VERSION 1.2.3
  COMPATIBILITY SameMajorVersion )
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/FooConfig.cmake
              ${CMAKE_CURRENT_BINARY_DIR}/FooConfigVersion.cmake
        DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Foo )

FooConfig.cmake.in:

set(FOO_VERSION x.y.z)
...
@PACKAGE_INIT@
...
set_and_check(FOO_INCLUDE_DIR "@PACKAGE_INCLUDE_INSTALL_DIR@")
set_and_check(FOO_SYSCONFIG_DIR "@PACKAGE_SYSCONFIG_INSTALL_DIR@")

check_required_components(Foo)