cmake-language(7)¶
Contents
Organization¶
CMake input files are written in the “CMake Language” in source files
named CMakeLists.txt
or ending in a .cmake
file name extension.
CMake Language source files in a project are organized into:
Directories (
CMakeLists.txt
),Scripts (
<script>.cmake
), andModules (
<module>.cmake
).
Directories¶
When CMake processes a project source tree, the entry point is
a source file called CMakeLists.txt
in the top-level source
directory. This file may contain the entire build specification
or use the add_subdirectory()
command to add subdirectories
to the build. Each subdirectory added by the command must also
contain a CMakeLists.txt
file as the entry point to that
directory. For each source directory whose CMakeLists.txt
file
is processed CMake generates a corresponding directory in the build
tree to act as the default working and output directory.
Scripts¶
An individual <script>.cmake
source file may be processed
in script mode by using the cmake(1)
command-line tool
with the -P
option. Script mode simply runs the commands in
the given CMake Language source file and does not generate a
build system. It does not allow CMake commands that define build
targets or actions.
Modules¶
CMake Language code in either Directories or Scripts may
use the include()
command to load a <module>.cmake
source file in the scope of the including context.
See the cmake-modules(7)
manual page for documentation
of modules included with the CMake distribution.
Project source trees may also provide their own modules and
specify their location(s) in the CMAKE_MODULE_PATH
variable.
Syntax¶
Encoding¶
A CMake Language source file may be written in 7-bit ASCII text for
maximum portability across all supported platforms. Newlines may be
encoded as either \n
or \r\n
but will be converted to \n
as input files are read.
Note that the implementation is 8-bit clean so source files may be encoded as UTF-8 on platforms with system APIs supporting this encoding. In addition, CMake 3.2 and above support source files encoded in UTF-8 on Windows (using UTF-16 to call system APIs). Furthermore, CMake 3.0 and above allow a leading UTF-8 Byte-Order Mark in source files.
Source Files¶
A CMake Language source file consists of zero or more Command Invocations separated by newlines and optionally spaces and Comments:
file ::=file_element
* file_element ::=command_invocation
line_ending
| (bracket_comment
|space
)*line_ending
line_ending ::=line_comment
?newline
space ::= <match '[ \t]+'> newline ::= <match '\n'>
Note that any source file line not inside Command Arguments or a Bracket Comment can end in a Line Comment.
Command Invocations¶
A command invocation is a name followed by paren-enclosed arguments separated by whitespace:
command_invocation ::=space
*identifier
space
* '('arguments
')' identifier ::= <match '[A-Za-z_][A-Za-z0-9_]*'> arguments ::=argument
?separated_arguments
* separated_arguments ::=separation
+argument
? |separation
* '('arguments
')' separation ::=space
|line_ending
For example:
add_executable(hello world.c)
Command names are case-insensitive.
Nested unquoted parentheses in the arguments must balance.
Each (
or )
is given to the command invocation as
a literal Unquoted Argument. This may be used in calls
to the if()
command to enclose conditions.
For example:
if(FALSE AND (FALSE OR TRUE)) # evaluates to FALSE
Note
CMake versions prior to 3.0 require command name identifiers to be at least 2 characters.
CMake versions prior to 2.8.12 silently accept an Unquoted Argument or a Quoted Argument immediately following a Quoted Argument and not separated by any whitespace. For compatibility, CMake 2.8.12 and higher accept such code but produce a warning.
Command Arguments¶
There are three types of arguments within Command Invocations:
argument ::=bracket_argument
|quoted_argument
|unquoted_argument
Bracket Argument¶
A bracket argument, inspired by Lua long bracket syntax, encloses content between opening and closing “brackets” of the same length:
bracket_argument ::=bracket_open
bracket_content
bracket_close
bracket_open ::= '[' '='{len} '[' bracket_content ::= <any text not containing abracket_close
of the same {len} as thebracket_open
> bracket_close ::= ']' '='{len} ']'
An opening bracket of length len >= 0 is written [
followed
by len =
followed by [
and the corresponding closing
bracket is written ]
followed by len =
followed by ]
.
Brackets do not nest. A unique length may always be chosen
for the opening and closing brackets to contain closing brackets
of other lengths.
Bracket argument content consists of all text between the opening and closing brackets, except that one newline immediately following the opening bracket, if any, is ignored. No evaluation of the enclosed content, such as Escape Sequences or Variable References, is performed. A bracket argument is always given to the command invocation as exactly one argument.
For example:
message([=[
This is the first line in a bracket argument with bracket length 1.
No \-escape sequences or ${variable} references are evaluated.
This is always one argument even though it contains a ; character.
The text does not end on a closing bracket of length 0 like ]].
It does end in a closing bracket of length 1.
]=])
Note
CMake versions prior to 3.0 do not support bracket arguments. They interpret the opening bracket as the start of an Unquoted Argument.
Quoted Argument¶
A quoted argument encloses content between opening and closing double-quote characters:
quoted_argument ::= '"'quoted_element
* '"' quoted_element ::= <any character except '\' or '"'> |escape_sequence
|quoted_continuation
quoted_continuation ::= '\'newline
Quoted argument content consists of all text between opening and closing quotes. Both Escape Sequences and Variable References are evaluated. A quoted argument is always given to the command invocation as exactly one argument.
For example:
message("This is a quoted argument containing multiple lines.
This is always one argument even though it contains a ; character.
Both \\-escape sequences and ${variable} references are evaluated.
The text does not end on an escaped double-quote like \".
It does end in an unescaped double quote.
")
The final \
on any line ending in an odd number of backslashes
is treated as a line continuation and ignored along with the
immediately following newline character. For example:
message("\
This is the first line of a quoted argument. \
In fact it is the only line but since it is long \
the source code uses line continuation.\
")
Note
CMake versions prior to 3.0 do not support continuation with \
.
They report errors in quoted arguments containing lines ending in
an odd number of \
characters.
Unquoted Argument¶
An unquoted argument is not enclosed by any quoting syntax.
It may not contain any whitespace, (
, )
, #
, "
, or \
except when escaped by a backslash:
unquoted_argument ::=unquoted_element
+ |unquoted_legacy
unquoted_element ::= <any character except whitespace or one of '()#"\'> |escape_sequence
unquoted_legacy ::= <see note in text>
Unquoted argument content consists of all text in a contiguous block of allowed or escaped characters. Both Escape Sequences and Variable References are evaluated. The resulting value is divided in the same way Lists divide into elements. Each non-empty element is given to the command invocation as an argument. Therefore an unquoted argument may be given to a command invocation as zero or more arguments.
For example:
foreach(arg
NoSpace
Escaped\ Space
This;Divides;Into;Five;Arguments
Escaped\;Semicolon
)
message("${arg}")
endforeach()
Note
To support legacy CMake code, unquoted arguments may also contain
double-quoted strings ("..."
, possibly enclosing horizontal
whitespace), and make-style variable references ($(MAKEVAR)
).
Unescaped double-quotes must balance, may not appear at the
beginning of an unquoted argument, and are treated as part of the
content. For example, the unquoted arguments -Da="b c"
,
-Da=$(v)
, and a" "b"c"d
are each interpreted literally.
The above “unquoted_legacy” production represents such arguments. We do not recommend using legacy unquoted arguments in new code. Instead use a Quoted Argument or a Bracket Argument to represent the content.
Escape Sequences¶
An escape sequence is a \
followed by one character:
escape_sequence ::=escape_identity
|escape_encoded
|escape_semicolon
escape_identity ::= '\' <match '[^A-Za-z0-9;]'> escape_encoded ::= '\t' | '\r' | '\n' escape_semicolon ::= '\;'
A \
followed by a non-alphanumeric character simply encodes the literal
character without interpreting it as syntax. A \t
, \r
, or \n
encodes a tab, carriage return, or newline character, respectively. A \;
outside of any Variable References encodes itself but may be used in an
Unquoted Argument to encode the ;
without dividing the argument
value on it. A \;
inside Variable References encodes the literal
;
character. (See also policy CMP0053
documentation for
historical considerations.)
Variable References¶
A variable reference has the form ${variable_name}
and is
evaluated inside a Quoted Argument or an Unquoted Argument.
A variable reference is replaced by the value of the variable,
or by the empty string if the variable is not set.
Variable references can nest and are evaluated from the
inside out, e.g. ${outer_${inner_variable}_variable}
.
Literal variable references may consist of alphanumeric characters,
the characters /_.+-
, and Escape Sequences. Nested references
may be used to evaluate variables of any name. (See also policy
CMP0053
documentation for historical considerations.)
The Variables section documents the scope of variable names and how their values are set.
An environment variable reference has the form $ENV{VAR}
and
is evaluated in the same contexts as a normal variable reference.
Comments¶
A comment starts with a #
character that is not inside a
Bracket Argument, Quoted Argument, or escaped with \
as part of an Unquoted Argument. There are two types of
comments: a Bracket Comment and a Line Comment.
Bracket Comment¶
A #
immediately followed by a Bracket Argument forms a
bracket comment consisting of the entire bracket enclosure:
bracket_comment ::= '#' bracket_argument
For example:
#[[This is a bracket comment.
It runs until the close bracket.]]
message("First Argument\n" #[[Bracket Comment]] "Second Argument")
Note
CMake versions prior to 3.0 do not support bracket comments.
They interpret the opening #
as the start of a Line Comment.
Line Comment¶
A #
not immediately followed by a Bracket Argument forms a
line comment that runs until the end of the line:
line_comment ::= '#' <any text not starting in abracket_argument
and not containing anewline
>
For example:
# This is a line comment.
message("First Argument\n" # This is a line comment :)
"Second Argument") # This is a line comment.
Control Structures¶
Conditional Blocks¶
The if()
/elseif()
/else()
/endif()
commands delimit code blocks to be executed conditionally.
Loops¶
The foreach()
/endforeach()
and
while()
/endwhile()
commands delimit code
blocks to be executed in a loop. Inside such blocks the
break()
command may be used to terminate the loop
early whereas the continue()
command may be used
to start with the next iteration immediately.
Command Definitions¶
The macro()
/endmacro()
, and
function()
/endfunction()
commands delimit
code blocks to be recorded for later invocation as commands.
Variables¶
Variables are the basic unit of storage in the CMake Language.
Their values are always of string type, though some commands may
interpret the strings as values of other types.
The set()
and unset()
commands explicitly
set or unset a variable, but other commands have semantics
that modify variables as well.
Variable names are case-sensitive and may consist of almost
any text, but we recommend sticking to names consisting only
of alphanumeric characters plus _
and -
.
Variables have dynamic scope. Each variable “set” or “unset” creates a binding in the current scope:
- Function Scope
Command Definitions created by the
function()
command create commands that, when invoked, process the recorded commands in a new variable binding scope. A variable “set” or “unset” binds in this scope and is visible for the current function and any nested calls, but not after the function returns.- Directory Scope
Each of the Directories in a source tree has its own variable bindings. Before processing the
CMakeLists.txt
file for a directory, CMake copies all variable bindings currently defined in the parent directory, if any, to initialize the new directory scope. CMake Scripts, when processed withcmake -P
, bind variables in one “directory” scope.A variable “set” or “unset” not inside a function call binds to the current directory scope.
- Persistent Cache
CMake stores a separate set of “cache” variables, or “cache entries”, whose values persist across multiple runs within a project build tree. Cache entries have an isolated binding scope modified only by explicit request, such as by the
CACHE
option of theset()
andunset()
commands.
When evaluating Variable References, CMake first searches the function call stack, if any, for a binding and then falls back to the binding in the current directory scope, if any. If a “set” binding is found, its value is used. If an “unset” binding is found, or no binding is found, CMake then searches for a cache entry. If a cache entry is found, its value is used. Otherwise, the variable reference evaluates to an empty string.
The cmake-variables(7)
manual documents many variables
that are provided by CMake or have meaning to CMake when set
by project code.
Lists¶
Although all values in CMake are stored as strings, a string
may be treated as a list in certain contexts, such as during
evaluation of an Unquoted Argument. In such contexts, a string
is divided into list elements by splitting on ;
characters not
following an unequal number of [
and ]
characters and not
immediately preceded by a \
. The sequence \;
does not
divide a value but is replaced by ;
in the resulting element.
A list of elements is represented as a string by concatenating
the elements separated by ;
. For example, the set()
command stores multiple values into the destination variable
as a list:
set(srcs a.c b.c c.c) # sets "srcs" to "a.c;b.c;c.c"
Lists are meant for simple use cases such as a list of source
files and should not be used for complex data processing tasks.
Most commands that construct lists do not escape ;
characters
in list elements, thus flattening nested lists:
set(x a "b;c") # sets "x" to "a;b;c", not "a;b\;c"