cmake-toolchains(7)¶
Contents
Introduction¶
CMake uses a toolchain of utilities to compile, link libraries and create archives, and other tasks to drive the build. The toolchain utilities available are determined by the languages enabled. In normal builds, CMake automatically determines the toolchain for host builds based on system introspection and defaults. In cross-compiling scenarios, a toolchain file may be specified with information about compiler and utility paths.
Languages¶
Languages are enabled by the project()
command. Language-specific
built-in variables, such as
CMAKE_CXX_COMPILER
,
CMAKE_CXX_COMPILER_ID
etc are set by
invoking the project()
command. If no project command
is in the top-level CMakeLists file, one will be implicitly generated. By default
the enabled languages are C
and CXX
:
project(C_Only C)
A special value of NONE
can also be used with the project()
command
to enable no languages:
project(MyProject NONE)
The enable_language()
command can be used to enable languages after the
project()
command:
enable_language(CXX)
When a language is enabled, CMake finds a compiler for that language, and determines some information, such as the vendor and version of the compiler, the target architecture and bitwidth, the location of corresponding utilities etc.
The ENABLED_LANGUAGES
global property contains the languages which
are currently enabled.
Variables and Properties¶
Several variables relate to the language components of a toolchain which are
enabled. CMAKE_<LANG>_COMPILER
is the full path to the compiler used
for <LANG>
. CMAKE_<LANG>_COMPILER_ID
is the identifier used
by CMake for the compiler and CMAKE_<LANG>_COMPILER_VERSION
is the
version of the compiler.
The CMAKE_<LANG>_FLAGS
variables and the configuration-specific
equivalents contain flags that will be added to the compile command when
compiling a file of a particular language.
As the linker is invoked by the compiler driver, CMake needs a way to determine
which compiler to use to invoke the linker. This is calculated by the
LANGUAGE
of source files in the target, and in the case of static
libraries, the language of the dependent libraries. The choice CMake makes may
be overridden with the LINKER_LANGUAGE
target property.
Toolchain Features¶
CMake provides the try_compile()
command and wrapper macros such as
CheckCXXSourceCompiles
, CheckCXXSymbolExists
and
CheckIncludeFile
to test capability and availability of various
toolchain features. These APIs test the toolchain in some way and cache the
result so that the test does not have to be performed again the next time
CMake runs.
Some toolchain features have built-in handling in CMake, and do not require
compile-tests. For example, POSITION_INDEPENDENT_CODE
allows
specifying that a target should be built as position-independent code, if
the compiler supports that feature. The <LANG>_VISIBILITY_PRESET
and VISIBILITY_INLINES_HIDDEN
target properties add flags for
hidden visibility, if supported by the compiler.
Cross Compiling¶
If cmake(1)
is invoked with the command line parameter
-DCMAKE_TOOLCHAIN_FILE=path/to/file
, the file will be loaded early to set
values for the compilers.
The CMAKE_CROSSCOMPILING
variable is set to true when CMake is
cross-compiling.
Note that using the CMAKE_SOURCE_DIR
or CMAKE_BINARY_DIR
variables inside a toolchain file is typically undesirable. The toolchain
file is used in contexts where these variables have different values when used
in different places (e.g. as part of a call to try_compile()
). In most
cases, where there is a need to evaluate paths inside a toolchain file, the more
appropriate variable to use would be CMAKE_CURRENT_LIST_DIR
, since
it always has an unambiguous, predictable value.
Cross Compiling for Linux¶
A typical cross-compiling toolchain for Linux has content such as:
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(CMAKE_SYSROOT /home/devel/rasp-pi-rootfs)
set(CMAKE_STAGING_PREFIX /home/devel/stage)
set(tools /home/devel/gcc-4.7-linaro-rpi-gnueabihf)
set(CMAKE_C_COMPILER ${tools}/bin/arm-linux-gnueabihf-gcc)
set(CMAKE_CXX_COMPILER ${tools}/bin/arm-linux-gnueabihf-g++)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
The CMAKE_SYSTEM_NAME
is the CMake-identifier of the target platform
to build for.
The CMAKE_SYSTEM_PROCESSOR
is the CMake-identifier of the target architecture
to build for.
The CMAKE_SYSROOT
is optional, and may be specified if a sysroot
is available.
The CMAKE_STAGING_PREFIX
is also optional. It may be used to specify
a path on the host to install to. The CMAKE_INSTALL_PREFIX
is always
the runtime installation location, even when cross-compiling.
The CMAKE_<LANG>_COMPILER
variables may be set to full paths, or to
names of compilers to search for in standard locations. For toolchains that
do not support linking binaries without custom flags or scripts one may set
the CMAKE_TRY_COMPILE_TARGET_TYPE
variable to STATIC_LIBRARY
to tell CMake not to try to link executables during its checks.
CMake find_*
commands will look in the sysroot, and the CMAKE_FIND_ROOT_PATH
entries by default in all cases, as well as looking in the host system root prefix.
Although this can be controlled on a case-by-case basis, when cross-compiling, it
can be useful to exclude looking in either the host or the target for particular
artifacts. Generally, includes, libraries and packages should be found in the
target system prefixes, whereas executables which must be run as part of the build
should be found only on the host and not on the target. This is the purpose of
the CMAKE_FIND_ROOT_PATH_MODE_*
variables.
Cross Compiling for the Cray Linux Environment¶
Cross compiling for compute nodes in the Cray Linux Environment can be done
without needing a separate toolchain file. Specifying
-DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment
on the CMake command line will
ensure that the appropriate build settings and search paths are configured.
The platform will pull its configuration from the current environment
variables and will configure a project to use the compiler wrappers from the
Cray Programming Environment’s PrgEnv-*
modules if present and loaded.
The default configuration of the Cray Programming Environment is to only
support static libraries. This can be overridden and shared libraries
enabled by setting the CRAYPE_LINK_TYPE
environment variable to
dynamic
.
Running CMake without specifying CMAKE_SYSTEM_NAME
will
run the configure step in host mode assuming a standard Linux environment.
If not overridden, the PrgEnv-*
compiler wrappers will end up getting used,
which if targeting the either the login node or compute node, is likely not the
desired behavior. The exception to this would be if you are building directly
on a NID instead of cross-compiling from a login node. If trying to build
software for a login node, you will need to either first unload the
currently loaded PrgEnv-*
module or explicitly tell CMake to use the
system compilers in /usr/bin
instead of the Cray wrappers. If instead
targeting a compute node is desired, just specify the
CMAKE_SYSTEM_NAME
as mentioned above.
Cross Compiling using Clang¶
Some compilers such as Clang are inherently cross compilers.
The CMAKE_<LANG>_COMPILER_TARGET
can be set to pass a
value to those supported compilers when compiling:
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(triple arm-linux-gnueabihf)
set(CMAKE_C_COMPILER clang)
set(CMAKE_C_COMPILER_TARGET ${triple})
set(CMAKE_CXX_COMPILER clang++)
set(CMAKE_CXX_COMPILER_TARGET ${triple})
Similarly, some compilers do not ship their own supplementary utilities
such as linkers, but provide a way to specify the location of the external
toolchain which will be used by the compiler driver. The
CMAKE_<LANG>_COMPILER_EXTERNAL_TOOLCHAIN
variable can be set in a
toolchain file to pass the path to the compiler driver.
Cross Compiling for QNX¶
As the Clang compiler the QNX QCC compile is inherently a cross compiler.
And the CMAKE_<LANG>_COMPILER_TARGET
can be set to pass a
value to those supported compilers when compiling:
set(CMAKE_SYSTEM_NAME QNX)
set(arch gcc_ntoarmv7le)
set(CMAKE_C_COMPILER qcc)
set(CMAKE_C_COMPILER_TARGET ${arch})
set(CMAKE_CXX_COMPILER QCC)
set(CMAKE_CXX_COMPILER_TARGET ${arch})
Cross Compiling for Windows CE¶
Cross compiling for Windows CE requires the corresponding SDK being
installed on your system. These SDKs are usually installed under
C:/Program Files (x86)/Windows CE Tools/SDKs
.
A toolchain file to configure a Visual Studio generator for Windows CE may look like this:
set(CMAKE_SYSTEM_NAME WindowsCE)
set(CMAKE_SYSTEM_VERSION 8.0)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(CMAKE_GENERATOR_TOOLSET CE800) # Can be omitted for 8.0
set(CMAKE_GENERATOR_PLATFORM SDK_AM335X_SK_WEC2013_V310)
The CMAKE_GENERATOR_PLATFORM
tells the generator which SDK to use.
Further CMAKE_SYSTEM_VERSION
tells the generator what version of
Windows CE to use. Currently version 8.0 (Windows Embedded Compact 2013) is
supported out of the box. Other versions may require one to set
CMAKE_GENERATOR_TOOLSET
to the correct value.
Cross Compiling for Windows 10 Universal Applications¶
A toolchain file to configure a Visual Studio generator for a Windows 10 Universal Application may look like this:
set(CMAKE_SYSTEM_NAME WindowsStore)
set(CMAKE_SYSTEM_VERSION 10.0)
A Windows 10 Universal Application targets both Windows Store and
Windows Phone. Specify the CMAKE_SYSTEM_VERSION
variable
to be 10.0
to build with the latest available Windows 10 SDK.
Specify a more specific version (e.g. 10.0.10240.0
for RTM)
to build with the corresponding SDK.
Cross Compiling for Windows Phone¶
A toolchain file to configure a Visual Studio generator for Windows Phone may look like this:
set(CMAKE_SYSTEM_NAME WindowsPhone)
set(CMAKE_SYSTEM_VERSION 8.1)
Cross Compiling for Windows Store¶
A toolchain file to configure a Visual Studio generator for Windows Store may look like this:
set(CMAKE_SYSTEM_NAME WindowsStore)
set(CMAKE_SYSTEM_VERSION 8.1)
Cross Compiling for Android¶
A toolchain file may configure cross-compiling for Android by setting the
CMAKE_SYSTEM_NAME
variable to Android
. Further configuration
is specific to the Android development environment to be used.
For Visual Studio Generators, CMake expects NVIDIA Nsight Tegra Visual Studio Edition to be installed. See that section for further configuration details.
For Makefile Generators and the Ninja
generator,
CMake expects one of these environments:
CMake uses the following steps to select one of the environments:
If the
CMAKE_ANDROID_NDK
variable is set, the NDK at the specified location will be used.Else, if the
CMAKE_ANDROID_STANDALONE_TOOLCHAIN
variable is set, the Standalone Toolchain at the specified location will be used.Else, if the
CMAKE_SYSROOT
variable is set to a directory of the form<ndk>/platforms/android-<api>/arch-<arch>
, the<ndk>
part will be used as the value ofCMAKE_ANDROID_NDK
and the NDK will be used.Else, if the
CMAKE_SYSROOT
variable is set to a directory of the form<standalone-toolchain>/sysroot
, the<standalone-toolchain>
part will be used as the value ofCMAKE_ANDROID_STANDALONE_TOOLCHAIN
and the Standalone Toolchain will be used.Else, if a cmake variable
ANDROID_NDK
is set it will be used as the value ofCMAKE_ANDROID_NDK
, and the NDK will be used.Else, if a cmake variable
ANDROID_STANDALONE_TOOLCHAIN
is set, it will be used as the value ofCMAKE_ANDROID_STANDALONE_TOOLCHAIN
, and the Standalone Toolchain will be used.Else, if an environment variable
ANDROID_NDK_ROOT
orANDROID_NDK
is set, it will be used as the value ofCMAKE_ANDROID_NDK
, and the NDK will be used.Else, if an environment variable
ANDROID_STANDALONE_TOOLCHAIN
is set then it will be used as the value ofCMAKE_ANDROID_STANDALONE_TOOLCHAIN
, and the Standalone Toolchain will be used.Else, an error diagnostic will be issued that neither the NDK or Standalone Toolchain can be found.
Cross Compiling for Android with the NDK¶
A toolchain file may configure Makefile Generators or the
Ninja
generator to target Android for cross-compiling.
Configure use of an Android NDK with the following variables:
CMAKE_SYSTEM_NAME
Set to
Android
. Must be specified to enable cross compiling for Android.CMAKE_SYSTEM_VERSION
Set to the Android API level. If not specified, the value is determined as follows:
If the
CMAKE_ANDROID_API
variable is set, its value is used as the API level.If the
CMAKE_SYSROOT
variable is set, the API level is detected from the NDK directory structure containing the sysroot.Otherwise, the latest API level available in the NDK is used.
CMAKE_ANDROID_ARCH_ABI
Set to the Android ABI (architecture). If not specified, this variable will default to
armeabi
. TheCMAKE_ANDROID_ARCH
variable will be computed fromCMAKE_ANDROID_ARCH_ABI
automatically. Also see theCMAKE_ANDROID_ARM_MODE
andCMAKE_ANDROID_ARM_NEON
variables.CMAKE_ANDROID_NDK
Set to the absolute path to the Android NDK root directory. A
${CMAKE_ANDROID_NDK}/platforms
directory must exist. If not specified, a default for this variable will be chosen as specified above.CMAKE_ANDROID_NDK_DEPRECATED_HEADERS
Set to a true value to use the deprecated per-api-level headers instead of the unified headers. If not specified, the default will be false unless using a NDK that does not provide unified headers.
CMAKE_ANDROID_NDK_TOOLCHAIN_VERSION
On NDK r19 or above, this variable must be unset or set to
clang
. On NDK r18 or below, set this to the version of the NDK toolchain to be selected as the compiler. If not specified, the default will be the latest available GCC toolchain.CMAKE_ANDROID_STL_TYPE
Set to specify which C++ standard library to use. If not specified, a default will be selected as described in the variable documentation.
The following variables will be computed and provided automatically:
CMAKE_<LANG>_ANDROID_TOOLCHAIN_PREFIX
The absolute path prefix to the binutils in the NDK toolchain.
CMAKE_<LANG>_ANDROID_TOOLCHAIN_SUFFIX
The host platform suffix of the binutils in the NDK toolchain.
For example, a toolchain file might contain:
set(CMAKE_SYSTEM_NAME Android)
set(CMAKE_SYSTEM_VERSION 21) # API level
set(CMAKE_ANDROID_ARCH_ABI arm64-v8a)
set(CMAKE_ANDROID_NDK /path/to/android-ndk)
set(CMAKE_ANDROID_STL_TYPE gnustl_static)
Alternatively one may specify the values without a toolchain file:
$ cmake ../src \
-DCMAKE_SYSTEM_NAME=Android \
-DCMAKE_SYSTEM_VERSION=21 \
-DCMAKE_ANDROID_ARCH_ABI=arm64-v8a \
-DCMAKE_ANDROID_NDK=/path/to/android-ndk \
-DCMAKE_ANDROID_STL_TYPE=gnustl_static
Cross Compiling for Android with a Standalone Toolchain¶
A toolchain file may configure Makefile Generators or the
Ninja
generator to target Android for cross-compiling
using a standalone toolchain.
Configure use of an Android standalone toolchain with the following variables:
CMAKE_SYSTEM_NAME
Set to
Android
. Must be specified to enable cross compiling for Android.CMAKE_ANDROID_STANDALONE_TOOLCHAIN
Set to the absolute path to the standalone toolchain root directory. A
${CMAKE_ANDROID_STANDALONE_TOOLCHAIN}/sysroot
directory must exist. If not specified, a default for this variable will be chosen as specified above.CMAKE_ANDROID_ARM_MODE
When the standalone toolchain targets ARM, optionally set this to
ON
to target 32-bit ARM instead of 16-bit Thumb. See variable documentation for details.CMAKE_ANDROID_ARM_NEON
When the standalone toolchain targets ARM v7, optionally set thisto
ON
to target ARM NEON devices. See variable documentation for details.
The following variables will be computed and provided automatically:
CMAKE_SYSTEM_VERSION
The Android API level detected from the standalone toolchain.
CMAKE_ANDROID_ARCH_ABI
The Android ABI detected from the standalone toolchain.
CMAKE_<LANG>_ANDROID_TOOLCHAIN_PREFIX
The absolute path prefix to the
binutils
in the standalone toolchain.CMAKE_<LANG>_ANDROID_TOOLCHAIN_SUFFIX
The host platform suffix of the
binutils
in the standalone toolchain.
For example, a toolchain file might contain:
set(CMAKE_SYSTEM_NAME Android)
set(CMAKE_ANDROID_STANDALONE_TOOLCHAIN /path/to/android-toolchain)
Alternatively one may specify the values without a toolchain file:
$ cmake ../src \
-DCMAKE_SYSTEM_NAME=Android \
-DCMAKE_ANDROID_STANDALONE_TOOLCHAIN=/path/to/android-toolchain
Cross Compiling for Android with NVIDIA Nsight Tegra Visual Studio Edition¶
A toolchain file to configure one of the Visual Studio Generators to build using NVIDIA Nsight Tegra targeting Android may look like this:
set(CMAKE_SYSTEM_NAME Android)
The CMAKE_GENERATOR_TOOLSET
may be set to select
the Nsight Tegra “Toolchain Version” value.
See also target properties:
Cross Compiling for iOS, tvOS, or watchOS¶
For cross-compiling to iOS, tvOS, or watchOS, the Xcode
generator is recommended. The Unix Makefiles
or
Ninja
generators can also be used, but they require the
project to handle more areas like target CPU selection and code signing.
Any of the three systems can be targeted by setting the
CMAKE_SYSTEM_NAME
variable to a value from the table below.
By default, the latest Device SDK is chosen. As for all Apple platforms,
a different SDK (e.g. a simulator) can be selected by setting the
CMAKE_OSX_SYSROOT
variable, although this should rarely be
necessary (see Switching Between Device and Simulator below).
A list of available SDKs can be obtained by running xcodebuild -showsdks
.
OS |
CMAKE_SYSTEM_NAME |
Device SDK (default) |
Simulator SDK |
---|---|---|---|
iOS |
iOS |
iphoneos |
iphonesimulator |
tvOS |
tvOS |
appletvos |
appletvsimulator |
watchOS |
watchOS |
watchos |
watchsimulator |
For example, to create a CMake configuration for iOS, the following command is sufficient:
cmake .. -GXcode -DCMAKE_SYSTEM_NAME=iOS
Variable CMAKE_OSX_ARCHITECTURES
can be used to set architectures
for both device and simulator. Variable CMAKE_OSX_DEPLOYMENT_TARGET
can be used to set an iOS/tvOS/watchOS deployment target.
Next configuration will install fat 5 architectures iOS library
and add the -miphoneos-version-min=9.3
/-mios-simulator-version-min=9.3
flags to the compiler:
$ cmake -S. -B_builds -GXcode \
-DCMAKE_SYSTEM_NAME=iOS \
"-DCMAKE_OSX_ARCHITECTURES=armv7;armv7s;arm64;i386;x86_64" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=9.3 \
-DCMAKE_INSTALL_PREFIX=`pwd`/_install \
-DCMAKE_XCODE_ATTRIBUTE_ONLY_ACTIVE_ARCH=NO \
-DCMAKE_IOS_INSTALL_COMBINED=YES
Example:
# CMakeLists.txt
cmake_minimum_required(VERSION 3.14)
project(foo)
add_library(foo foo.cpp)
install(TARGETS foo DESTINATION lib)
Install:
$ cmake --build _builds --config Release --target install
Check library:
$ lipo -info _install/lib/libfoo.a
Architectures in the fat file: _install/lib/libfoo.a are: i386 armv7 armv7s x86_64 arm64
$ otool -l _install/lib/libfoo.a | grep -A2 LC_VERSION_MIN_IPHONEOS
cmd LC_VERSION_MIN_IPHONEOS
cmdsize 16
version 9.3
Code Signing¶
Some build artifacts for the embedded Apple platforms require mandatory
code signing. If the Xcode
generator is being used and
code signing is required or desired, the development team ID can be
specified via the CMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM
CMake variable.
This team ID will then be included in the generated Xcode project.
By default, CMake avoids the need for code signing during the internal
configuration phase (i.e compiler ID and feature detection).
Switching Between Device and Simulator¶
When configuring for any of the embedded platforms, one can target either
real devices or the simulator. Both have their own separate SDK, but CMake
only supports specifying a single SDK for the configuration phase. This
means the developer must select one or the other at configuration time.
When using the Xcode
generator, this is less of a limitation
because Xcode still allows you to build for either a device or a simulator,
even though configuration was only performed for one of the two. From
within the Xcode IDE, builds are performed for the selected “destination”
platform. When building from the command line, the desired sdk can be
specified directly by passing a -sdk
option to the underlying build
tool (xcodebuild
). For example:
$ cmake --build ... -- -sdk iphonesimulator
Please note that checks made during configuration were performed against
the configure-time SDK and might not hold true for other SDKs. Commands
like find_package()
, find_library()
, etc. store and use
details only for the configured SDK/platform, so they can be problematic
if wanting to switch between device and simulator builds. You can follow
the next rules to make device + simulator configuration work:
Use explicit
-l
linker flag, e.g.target_link_libraries(foo PUBLIC "-lz")
Use explicit
-framework
linker flag, e.g.target_link_libraries(foo PUBLIC "-framework CoreFoundation")
Use
find_package()
only for libraries installed withCMAKE_IOS_INSTALL_COMBINED
feature